Questions on Forces - Mark Scheme

1. (i) Expected answer:
'For equilibrium of an object the sum of clockwise
moments about a point = sum of anticlockwise
moments about the same point.'
clockwise moment $(\mathrm{s})=$ anticlockwise moment (s)
Note: The term 'clockwise' to be included and spelled correctly to gain the M1 mark
Note: 'net moment $=0$ ' is equivalent to the M1 mark

Reference to one of the moments taken about a point/‘equilibrium'/sum (or total or net or \sum) mentioned once

Note: If M1 is lost for incorrect spelling of 'clockwise', then allow this A1 mark
(ii) $200 \times 12=F \times 75$
$F=32(\mathrm{~N})$
Note: Bald answer of $32(N)$ scores $2 / 2$ marks
(iii) $\quad p=\frac{32}{6.0 \times 10^{-5}}$

Possible ecf
pressure $=5.3 \times 10^{5}(\mathrm{~Pa})$
Note: Bald answer of $5.3 \times 10^{5}(\mathrm{~Pa})$ scores $2 / 2$ marks
(iv) (Pressure is) greater
because the force/ F is larger (to provide the same moment)
2. (i) $\mathbf{1}$ The (distribution of the) mass of the lawn mower is not uniform
2. One correct moment about A stated

B $\times 110$ or $350 \times 20 \quad$ B1
$B=(350 \times 20) / 110($ moments equated $) \quad$ B1
$B=63.6(\mathrm{~N}) \quad \mathrm{A} 0$
3. $\mathrm{A}=350-63.6=286(.4)(\mathrm{N}) \quad \mathrm{A} 1$
(ii) A goes down and B goes up B1

Turning effect of B is less / B needs greater force to produce the same moment / if distance goes down force needs to go up (to maintain the same turning effect) B1
3. (i) $1 \quad 3600 \times 1.0=\mathrm{X} \times 2.5$

C2
one mark for one correct moment, one mark for the second correct moment and equated to first moment
$2 \quad \mathrm{X}=1440(\mathrm{~N})$ C1
$\mathrm{Y}=3600-1440 \quad$ or $3600 \times 1.5=\mathrm{Y} \times 2.5$ A1

$$
=2160(\mathrm{~N}) \quad \text { B1 }
$$

(ii) Not a couple as forces are not equal B1 and not in opposite directions / the forces are in the same direction
(iii) $\mathrm{P}=\mathrm{F} / \mathrm{A} \quad \mathrm{B} 1$

$$
=1440 / 2.3 \times 10^{-2}
$$

B1
4. (Force is 1 N) when a $\mathbf{1} \mathbf{k g}$ mass has an acceleration of $\underline{\mathbf{1 m ~ s}}{ }^{-}$

Not: ' 1 kg and $1 \mathrm{~m} \underline{\mathrm{~s}^{-1}}$,
Allow: $(1 \mathrm{~N}=) \underline{\mathbf{1 k g} \times \underline{1 \mathrm{~m} \mathrm{~s}^{-2}}}$
5. (i) Kinetic energy $=1 / 2 \mathrm{mv}^{2}$

$$
\begin{aligned}
= & 1 / 21380 \times(31.1)^{2} \\
= & 667375(\mathrm{~J})(667 \mathrm{~kJ}) \\
& 6.7 \times 10^{5}(\mathrm{~J})
\end{aligned}
$$

(ii) $\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}$

$$
0=(31.1)^{2}+2 \times \mathrm{a} \times 48.2
$$

$$
\begin{equation*}
\mathrm{a}=10.0(3)\left(\mathrm{m} \mathrm{~s}^{-2}\right) \tag{C1}
\end{equation*}
$$

(iii) $\mathrm{F}=\mathrm{ma}$

$$
\begin{array}{lrl}
=1380 \times 10.03 & \mathrm{~F}=667375 / 48.2 \\
& =13800(13846)(\mathrm{N}) & \\
& =13800(13846)(\mathrm{N})
\end{array}
$$

or work $=$ force \times distance
6. Four from:

Prevents the driver from hitting the steering wheel / windscreen
Deflates quickly to prevent whiplash
Increases the time/distance to stop
Decreases the (impact) force on the driver
$\begin{array}{ll}\text { Much wider area of the bag reduces the pressure } & \text { B1 } \times 4\end{array}$
7. Any two factors from:
speed, mass, condition of tyres, condition of brakes, condition of road, gradient of road

Allow: KE if neither mass nor speed is mentioned.

For each factor, correct description of how braking distance is affected
E.g:

- Greater speed means greater distance Or distance ∞ speed 2 (ora)
- Greater mass means greater distance Or distance ∞ mass (ora)
- Worn tyres / brakes implies less friction therefore greater distance (ora)
- Wet / slippery / icy road means less friction therefore greater distance (ora)
- Uphill means shorter distance (ora)

For description marks, reference to 'distance' instead of 'braking distance' is fine

For $1^{\text {st }}$ bullet point allow reference to kinetic energy
Allow: 'more' or 'longer' instead of 'greater' when referring to distance

Do not allow 'grip' for friction for $3^{\text {rd }}$ and $4^{\text {th }}$ bullet points
8. 1. (Several) satellites used
2. Distance from (each) satellite is determined
3. Position / distance is determined using c/speed of e.m waves / radio waves / microwaves and delay time (wtte)
4. Trilateration is used to locate the position of the car
Or position of car is where circles / spheres cross (wtte)

Note: The term 'satellite(s)' to be included and spelled correctly,on all occasions, to gain this first (or second) B1 mark (Deduct this mark only once.)

Do not allow this $4^{\text {th }}$ mark for just a diagram of intersecting spheres / circles
9. (a) $W=m g$

Allow: Use of $9.8\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$
weight $=1.50 \times 9.81=14.72(\mathrm{~N})$ or $14.7(\mathrm{~N})$ or $15(\mathrm{~N})$
Allow: Bald $15(\mathrm{~N})$; but not ' $1.50 \times 10=15(\mathrm{~N})$ '
(b) (i) $\quad \underline{N e t} /$ resultant force $($ on $\mathbf{B})$ is less / (net) force (on $\mathbf{B})$ is less than its weight / there is tension (in the string) / there is a vertical / upward / opposing force (on B)

Note: Must have reference to force
(ii) $s=u t+\frac{1}{2} a t^{2}$ and $u=0$

$$
1.40=\frac{1}{2} \times 1.09 \times t^{2}
$$

Allow: 2 marks for 1.75/1.09' if answer from (iii) is used
$t=1.60(\mathrm{~s})$
Allow: 2 sf answer
Allow: 2 marks if $\underline{\mathbf{2 . 8 0} \mathbf{~ m}}$ is used; time $=2.27$ (s)
(iii) $v^{2}=2 \times 1.09 \times 1.40 / v=0+1.09 \times 1.60$

Possible ecf
$v=1.75\left(\mathrm{~m} \mathrm{~s}^{-1}\right) / v=1.74\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
Allow: 1.7 or $1.8\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
(iv) change in velocity $=2.47+1.50\left(=3.97 \mathrm{~m} \mathrm{~s}^{-1}\right)$

Ignore sign for change in velocity
C1
$\begin{aligned} \text { acceleration } & =\frac{3.97}{0.030} \\ \text { acceleration } & =132\left(\mathrm{~m} \mathrm{~s}^{-2}\right)\end{aligned}$
Allow: $130\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$
Special case:
acceleration $=\frac{2.47-1.50}{0.030}$ or $32\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ scores 1 mark
A1
[9]
10. The mass of particles increases (at its speed gets closer to the speed of light)

Not: 'weight of particle increases'
Not: 'mass changes / different'
11. (i) Correct vector triangle drawn
$2.14(\mathrm{kN})$

Note:

Expect at least one 'label' on the sketch, eg: 2.14, 1.5, 90°.
The 'orientation' of the triangle is not important.
The directions of all three arrows are required
$(\text { resultant force })^{2}=2.14^{2}+1.50^{2}$
$($ resultant force $)=261(\mathrm{kn})$
Allow: 2 sf answer of 2.6 (kN)
Allow a scale drawing; 2 marks if answer is within $\pm 0.1 \mathrm{kN}$ and 1 mark if $\pm 0.2 \mathrm{kN}$
Alternative for the C1 A1 marks:
$1.50 \cos (55)$ or $2.14 \cos (35) \quad C 1$
resultant force $=1.50 \cos (55)+2.14 \cos (35)$
resultant force $=2.61(\mathrm{kN}) \quad$ A1
(ii) $2.6(1)(\mathrm{kN})$

Possible ecf
(Constant velocity implies) zero net force / zero acceleration
Not: 'resultant force = drag' since the first B1 assumes this
12. Any three from:

1. (Suspend plate from a point and then) mark a vertical line on the plate (wtte)
2. Plumb line / 'pendulum' (used to find the vertical line)
3. Hang from another point / place (and draw another vertical line) (wtte)
4. Where the lines intersect gives position of centre of gravity (wtte)

Note: For 1st point accept 'mark line of string'
Allow: 1 mark for 'By trial and error find a position where the plate balances'
13. (i) net force $=120(\mathrm{~N})$

$$
\begin{aligned}
& a=\frac{120}{900} \\
& a=0.13\left(\mathrm{~m} \mathrm{~s}^{-2}\right)
\end{aligned}
$$

Note: Bald answer scores 2 marks; answer must be 2 sf or more
C1
(ii) The drag force changes with speed / acceleration is not constant

